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We study the sensitivity of nuclear hydrodynamics to the equation of 

state of nuclear matter at high densities and temperatures. The pressure, 

P, and entropy, S, generated in nuclear collisions between SO and 2000 

MeV/nucleon are computed in a variety of models for the equation of 

state. The high precision r~quired in jet and composition analysis to 

deduce P and S from data is discussed. 
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Nuclear collisions at high energies offer a unique opportunity 1n the 

laboratory for probing the properties of nuclear matter at high densities, 

p, and temperatures, T. Experimental evidence for preferential sidewards 

. . f . 1 1 11 . . l-3 h b . d4 , 5 em1ss1on o matter 1n near y centra co 1s1ons as een 1nterprete 

as being due to the collective flow of shocked nuclear matter during the 

compression and expansion stages of the collision. The observed large 

f 
. 3,6,7 . 

transverse momentum trans er on heavy target res1dues can be 1nter-

4 5 8 
preted 1n the bounce off model ' ' as consequence of the large pressure 

in the shock zone exerted on the "spectator" fragments. The validity of 

h fl 'd d . 1 . . 9 •10 f 1 11' . . sue a u1 ynam1ca 1nterpretat1on o nuc ear co 1s1ons requ1res, 

however, that the nucleon mean free path, A ~ 2 fm, is much smaller than 

1/3 11 
the size of the system R ~ 1.2 A fm. In practice , R/A ~ 3 (A~ 125) 

insures local thermal equilibration, the prerequisite for hydrodynamics. 

Thus far only light nuclear beams (A < 40) were available experimentally, 

and indeed evidence for nonequilibrium dynamics has been observed in 

11 .. fl' 1 1' 12 co 1s1ons o 1ght, equa mass nuc e1 • In the near future, beams up 

to uranium will be available, for which such nonequilibrium, finite 

particle effects are expected to be much less important. 

Assuming then that fluid dynamics is valid at least for not too 

peripheral collisions of heavy nuclei, the important question is how sensi-

tive are the predicted observables to the nuclear matter equation of state, 

W(P,T) =energy per nucleon at a given density, p, and temperature, T. In 

other words, what are our chances for deducing W(P,T) experimentally? 

Previous calculations assuming chemical equilibration have shown that 

. 13-15 
hadron (TI,6) product1on excitation functions and light (p,d,He) 

. 15,16 . 
5 

a , , , 
nuclear fragment rat1os y1eld ~ 0% sens1t1v1ty to the nuclear equa-

tion of state. However, calculations using hadron chemistry
17 

cast doubt 
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on full chemical equilibration, and thus the sensitivity of those ratios 

to W(p,T) would be even less. 

Numerical calculations of double differential inclusive cross 

section, d2a/d~dE, have shown no significant sensitivity to the 

compression part W (p), of W(p,T), at the level of the ~50% numerical 
c 

. . 10,13,15,18-20 4,5 
uncerta~nt~es. It was shown , however, that the 

sensitivity of double differential cross sections>d2a/d~E>on the 

reaction dynamics could be increased by detailed inspection of (1) triple 

differential cross sections
5

, d3 a/dEdcos8d~, of the various emitted 

particles and (2) the predicted jets4 •5 of matter to be observed in 4TI 

exclusive data analysis. In this paper, we show analytically that the 

level of sensitivity to W (p) of the average fluid dynamical behavior can 
c 

. 2 9 10 
be understood from the Rankine-Hugoniot equat~on. ' ' Specifically, we 

calculate the maximum pressure, P(E) = P[p(E),T(E)], and the entropy per 

nucleon, S(E) = S[p(E),T(E)], as a function of the beam kinetic energy per 

nucleon, E, by using the relativistic Rankine-Hugoniot equation to 

estimate p(E) and T(E). Unlike W(p,T), P(E) and S(E) can be directly 

related to experimental observables: The pressure, as the driving force 

for the fluid motion, determines the mean collective flow behavior, 

. 11 f 
4 •8 '1 espec~a y the transverse momentum trans er , wh~ e the entropy 

d d . h h d . 13-15 . 1 pro uce determ~nes t e adron pro uct~on rates and chem~ca 

15 16 
composition of light nuclear fragments. ' 

At present, the combined measurement of P(E) and S(E) via detailed 

jet analysis and composition analysis prom~ses ~n fact the best prospects 

for determining W(P,T) ultimately from nuclear collision dataf 1, 22 

. 2 9 10 
We start with the Rankine-Hugoniot equat~on ' ' , 

(1) 
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since shock formation is the primary mechanism for compression and entropy 

production in hydrodynamics at these energies. Furthermore, the maximum 

densities and temperatures achieved in full 3D hydrodynamical calculations 

9 10 
agree well ' with those expected from eq. (1). This is natural since 

eq. (1) simply expresses conservation of baryon, momentum, and energy 

fluxes across the shock front. On one side of the shock, normal nuclear 

with P 0.17 
-3 

streaming inwards uniformly. matter = p ::::: fm and T :::: 0 ~s 
0 

On the other side of the shock, hot, compressed nuclear matter with p > p 
0' 

T > 0 is formed. Eq. (1) is derived in the frame in which the compressed 

matter has zero flow velocity. The energy per nucleon, W(p,T), ~n the shock 

zone 1s therefore fixed by the lab kinetic energy per nucleon E as 

W = Y (E)W 

where W 
0 

em o 

= m - B ~ 931 MeV andY = (1 + E/2W )l/2• 
N em o 

Note that 

( 2) 

eqs. (1,2) can be applied only up to the time when the smaller nucleus ~s 

consumed by the shock zone. After that time the shock zone can no longer be 

maintained by the incoming streaming matter, and the compressed matter 

d 1 . . 11 9,10,16 expan s near y ~sentrop1ca y • 

Usually
2

•9 •10
, eq. (1) is solved to obtain P(E) and T(E) in the 

compressed region. However, we observe that with eqs. (1,2) the total 

pressure P(E} in the shock is given simply by 

P(E) = -
2
1 EP

0
[1- Y (E)P /P(E)]- 1• 

em o 
(3) 

Eq. (3) shows that the only source of sensitivity of P(E) to W(P,T) occurs 

through the dependence of P(E) on W. Unfortunately, the higher the 

compression achieved, the weaker is the dependence of P(E) on W! 
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To illustrate this weak dependence on W, consider first the case when 

there is no compression energy (We = 0) and P = PT, where 

(4) 

For a = 2/3, eq. (4) corresponds to the nonrelativistic ideal or Fermi gas 

equation of state. Regardless of the form of WT(p,T), WT is constrained 

by eq. (2) to be 

(5) 

With eqs. (4,5), eq. (1) yields 

p(E) = p J(l + a)y (E) + ll/a 
. 0 l em r 

(6) 

and 

1 ( a ~- Ep 1 + -) 
2 0 2 

(7) 

where the approximate forms hold for E ~ 1 GeV/nucleon. It is instructive 

to consider three cases, a= 1/3, 2/3, 1, corresponding to soft, normal, 

and stiff thermal equations of state. For a fixed density P and E, P(E) 

varies by a factor of three ~n this range of a, However, eq. (1) only 

allows a specific P = p(E), eq. (6) for a given a and E. ForE~ 1 

GeV/nucleon, P(E)/P ~ 7, 4, 3 P for a= 1/3, 2/3, 1, respectively. 
0 0 

Therefore, rather different densities are achieved for the three different 

equations of state. Nevertheless, P(E)/(EP /6) = 7, 8, 9, respectively, 
0 

showing that the total pressure differs by ~30%! 
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We next study the effect of including a compression energy W (P). 
c 

The following popular9 •10 •15 •20 
functional forms were tested: 

w ( p) = 
c 

(8a) 

(8b) 

K(p/p-l+flnp/p)/9 (8d) 
0 0 

where K = 9p~d2Wc/d2 p0 is the incompressibility modulus. For a given 

W (p), the pressure due to compression is just P (p) = p
2

dW /dp. We assume 
c c c 

the thermal pressure is given by eq. (4). Eq. (1) can then be solved 

analytically for p(E) and P(E). In order to compare the various cases, we 

plot the ratio, P(E)/PFG(E), where the Fermi gas pressure is given by 

eq. (7) with a = 2/3. 

In Fig. la, we vary K from 100 to 800 MeV for a fixed functional form 

of W (p) given by eq. (8a). In Fig. lb, we fix K = 200 MeV but vary the 
c 

functional form of W (p) via eqs. (8a-8d). In Fig. lc, we fix K = 200 MeV 
c 

and W (p) with eq. (8a) but now vary the thermal part via a= 1/3, 2/3, 1 
c 

~n eq. (4). For the equations of state considered in Fig. 1 we also show 

~n Fig. 2 the corresponding ratio of the compression pressure to the 

thermal pressure Pc/PT. The absolute value of the Fermi gas pressure 1s 

plotted in Fig. 3a. In addition, in Fig. 3a we compare PFG to realistic 

· f b d 1 · · · mean f~eld theory23 •24 Th equauons o state ase on re at1v1st~c .._ e 

pressures 1n those theories are given 1n terms of the self-consistent 

scalar, a, and vector, V , fields [see Refs. (23,24) for details]. 
0 
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The predicted almost linear increase of P withE is of interest, as it 

may be used to determine the low and high energy limits of the validity of 

the fluid dynamical treatment, e.g. via measurements of the transverse 

8 
momentum transfer • In this context, the large absolute values of Pat 

high energies (P ~ 150 MeV/fm3 at E = 1 GeV/n ) for all the equations of 

state considered should also be emphasized. 

The important observation, in accord with eq. (3), is that as E 

increases, p(E) increases (Fig. 3c), and P(E) 1s less sensitive to 

variations in Wc(p), while the sensitivity to WT increases. 

The maximum sensitivity (~SO%) to the compression part of W occurs 

for E ~ 50-100 MeV/nucleon. There is clearly a lower bound of E ~ 50 

MeV/nucleon below which hydrodynamics cannot apply due to Pauli blocking, 

d f . ld d . ( ) . . 25 f 100 an mean 1e ynam1cs TDHF 1s appropr1ate • There ore, E ~ 

MeV/nucleon seems to be most promising in gaining sensitivity to W • At 
c 

higher energies (E > 1 GeV/nucleon), PT > Pc (see Fig. 2) and there is very 

little sensitivity to P • On the other hand, at these higher energies, the 
c 

sensitivity to PT increases, but again only to ~25% when a 1s varied from 

1/3 to 1. Therefore, at high energies E > 1 GeV/nucleon, rather high 

precision measurement of P(E) (via jet analysis 5) must be made in order to 

distinguish between various WT(p,T). We emphasize that the insensitivity 

of P(E) to W is not due to a too restrictive choice of functional forms of 

W(p,T). As seen 1n Fig. 2, the ratio of Pc/PT varies by a factor of 10 

as We and WT are varied. However, the sum, P = Pc + PT, which 1s the 

driving force of hydrodynamics, varied by only 30% above a few hundred 

MeV/nucleon! Baryon and energy-momentum conservation, eq. (3), are such 

strong constraints on P that the details of exactly how the energy is par-

titioned into compression and thermal parts lead to ~30% corrections only. 
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Next we turn to entropy production. 

the form eq. (4), we must have WT(p,S) = 

2 
For PT = p 3WT/3pl 8 of 

f(S)(p/p )a. For illustration 
0 

2 
we consider f(S) oc S , as 1n the degenerate Fermi gas case, implying 

2 a WT ocT /p. In this case, 

S(E) = C[WT(E)/W J112 [p /p(E)]a/ 2 
0 0 

For the degenerate Fermi gas case with no compression energy, we get via 

eqs. (5,6) 

(9) 

(10) 

Therefore, we set C = 15.5 so that eq. (9) coincides with eq. (10) when a 

= 2/3 and E/~ << 1. We note that the exact Fermi gas entropy is 

somewhat less than eq. (10) as seen in Fig. 3b. However, for our purposes 

eq. (9) will suffice to illustrate the sensitivity of S(E) to W(p,T). 

In Fig. 1 we plot S(E)/SFG(E) for the variety of equations of state 

discussed. In Fig. la, lb, a= 2/3 is used in eq. (9). In Fig. lc, eq. 

(9) with a= 1/3, 2/3, 1 including compression [eq. (8a)] are compared to 

eq. (10). Note that the a= 2/3 case is not equal to SFG because in 

Fig. lc the compression energy eq. (8a) modifies the WT and P entering 

eq. (9). The entropy SMF(E) 1n the self-consistent mean field theory
23

•
24 

1s compared to the exact SFG on an absolute scale in Fig. 3b. Note that 

SMF reduces to the exact Fermi gas entropy when the scalar and vector 

interactions are reduced. The absolute values of S(E) can be compared to 

those extracted16 from measured d/p ratios. 
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As with P(E)/PFG(E), S(E)/SFG(E) is most sensitive to We at 

lower energies ~100 MeV/nucleon. However, a factor of eight variation of 

K again leads to a ~20% variation of S(E) in Fig. la only. The variation 

of WT via a = 1/3 to 1 leads also to a ~30% variation in S(E) at higher 

energies ~lGeV/nucleon only. In Fig. la we can see that for a fixed 

functional form of W , eq. (8a), S(E) decreases with increasing 
c 

incompressibility K. However, in Fig. lb, for a fixed K = 200 increasing 

the compression energy at high p by using the stiffer eq. (8b) instead of 

eq. (8a) leads to an increase in the entropy. 

This prev~ous observation shows the importance of measuring both P(E) 

and S(E), if W (p) is to be ultimately determined. For example, forE= 
c 

100 MeV/nucleon P/PFG ~ 1.4 for either K = 400 with eq. (8a) or K = 200 

with eq. (8c). However, S/SFG = 0.83 and 0.92 for those cases, respec-

ti vely. The point is that there are at least two unknowns, W (p) and 
c 

WT(p,T) or Pc and PT. Eq. (3) can be used to determine p(E) from 

data once P(E) = Pc + PT is deduced from jet analysis5 • If eq. (9) 

is assumed to hold with a= 2/3, then WT(E) could be deduced knowing S(E) 

f · · analys~s 15 ' 16 ' 21 and p(E). rom compos~t~on .._ In this idealized scenario, 

eq. (2) would give, finally, W (p) for p = p(E). Of course, even in this 
c 

idealized scenario, very high precision measurements (~10% accuracy) must 

be made of both P(E) and S(E) in order to map out W (p). 
c 

We now are in the position to see why the calculations of Refs. 

(10,13,15,18-20) were so insensitive to variations in the equation of 

state. First numerical uncertainties were typically on the order of ~50% 

in 3D hydrodynamical calculations. At that level we have little hope to 

observe the expected 30% effects from eqs. (3,9). Second, calculations 
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have concentrated up to now on the higher energy region E ~ 250 

MeV/nucleon. The most extensive comparisons with data have been made for 

Ne + U atE = 400 MeV/nucleon9 •10 •20 •21 • As seen in Fig. 1, there 1s 

significantly less sensitivity to W at these energies than around E ~ 
c 

100 MeV/nuc leon. 

Knowing the accuracy (~10%) in measurements of P(E) and S(E) that are 

necessary in order to map out a "normal" We (p), we confront finally the 

question of whether such precision measurements are realistic at this time. 

Up to now we have purposely considered the most optimistic scenario 1n 

which P(E) and S(E) follow from eq. (1). There are, however, several 

obvious complications. First, hydrodynamics may apply only to a fraction 

of the interaction zone, where multiple collisions lead to rapid, local 

thermal equilibrium. 
11 

Finite number and nonequilibrium effects must be 

subtracted in determining P(E) and S(E) from data. An important step 1n 

this direction will be to scatter the heaviest nuclei, U + U, to reduce 

such effects. Second, the jetting phenomena predicted 1n hydrodynamics4 •5 

must be firmly established if P(E) 1s ever to be determined experimentally. 

. 1 . 26 . . We note that 1ntranuclear cascade ca culat1ons have pred1cted for l1ght 

nuclei as Ar + Ar a much smaller perpendicular momentum transfer to the 

. . 4,5 
spectator nucleons than calculated 1n hydrodynam1cs There is already 

evidence (the forward suppression of protons 1n the high multiplicity 

triggered Ne + U, 400 MeV/nucleon data
1

) that nuclear collisions are less 

transparent than expected from intranuclear cascade models. However, the 

crucial test for hydrodynamics will be the jet analysis (triple differen-

. 1 . )5 t1a cross sect1ons • If, indeed, clear hydrodynamic phenomena are 

established (especially U + U atE~ 100 MeV/nucleon), we can proceed to 
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h f . . 1 . 15,16,21 t e next step o compos~t~on ana ys~s Fitting the d/p, a/p, 

TI/p ratios as well as their energy spectra determines
16 

S(E) if chemical 

equilibrium and isentropic expansion were valid in nuclear collisions. 

Estimates
27 

via the Navier-Stokes equation for the additional entropy, 

6S, produced in the expansion phase show that 6S/S ~ 0.2. The isentropic 

assumption is therefore not bad, but the sensitivity required (6S/S ~ 0.1) 

to distinguish various (reasonable) equations of state lies within the 

noise of such effects. Therefore, the S(E) obtained v~a the Euler 

. 15 . . 
equat~on cannot be used to compare w~th data yet. Full 3D Nav~er-Stokes 

. 11 b 1 d . 22 
equat~ons must eventua y e so ve to h~gh accuracy Experimentally, 

measurement of the A dependence of S(E) ~s necessary to help untangle 

viscosity and thermal conductivity effects from shock heating. Simple 

estimates 
27 

indicate, for example, that 6S 
-1/3 

decreases as ~A • The 

question of chemical equilibrium still needs much further study. Calcula-

. . h . . 17 b f 11 . 1 t1ons us~ng hadron c em~stry equat1ons cast dou t on u chem~ca 

equilibration. Furthermore, not every species ~s likely to be equilibrated 

to the same degree. Ideally, hadron chemistry calculations ~n 3D 

Navier-Stokes equations would be necessary to answer this question. 

We conclude that probing the properties of dense nuclear matter v~a 

nuclear collisions is a challenging but formidable task. We have found 

that an accuracy on the order of 10% will be required for P(E) and S(E) ~n 

order to deduce W(p,T) from data. High precision data on triple differen-

tial cross sections for p,d,a, involving 4TI exclusive event shape analysis, 

'11 f . 1 . 5 . w1 be necessary to carry out the program o Jet ana ys~s and compos~-

t~on 1 . 15,16,21 .... ana ys~s At the same time, rather elaborate theoretical 

calculations of equal precision will be required to analyze that data in 

terms of P(E) and S(E). The prize, W(p,T), is certainly worth the effort. 
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Figure Captions 

1. The ratio of P(E) to PFG' eqs. (3,7), upper curves, and S(E) to 

SFG' eqs. (9,10), lower curves, are shown as a function of lab 

kinetic energy per nucleon for a variety of equations of state. 

a) K = 100, 200, 400, 800 MeV for curves 1, 2, 4, 8, respectively, 

assum1ng W given by Eq. (Sa) and a = 2/3 for P • 
c T 

b) K = 200 MeV and a= 2/3 fixed but W given by eqs. (8a-d), 
c 

curves 2, b, c, d, respectively. 

c) K = 200 MeV, eq. (8a) fixed but a= 1/3, 2/3, 1 for curves 1, 2, 

3, respectively. 

2. The ratio of the compression to thermal pressures, Pc/PT as a 

function of energy corresponding to W(p,T) used in Fig. 1 

respectively. 

3. a) Total pressure P(E) vs E for Fermi gas (solid line) compared 

with mean field theory, K = 550 from Ref. 23, 

K = 270, and K = 170 (marked with X) from Ref. 24. 

b) Entropy per baryon S(E) vs E for equations of state 1n (a). 

SFG is the exact Fermi gas result. 

c) The maximum density, p(E) vs E for equations of state in Fig. 

lb. [FG = eq. (6), a= 1/3 is for curve 1 of Fig. lc]. 
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